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ABSTRACT

A new algorithm for identifying and characterizing vortices in complex flows is presented.
The scheme uses both the vorticity and pressure fields. A skeleton line along the center of a
vortex is produced by a two-step predictor-corrector scheme. The technique uses the vector
field to move in the direction of the skeleton line and the scalar field to correct the location in
the plane perpendicular to the skeleton line. A general vortex cross section can be concisely
defined with five parameters at each point along the skeleton line. The details of the method
and examples of its use are discussed.
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1 Introduction

Vortices are considered the most important structures that control the dynamics of flow

fields. Large-scale vortices observed in atmospheric and oceanographic flows are responsible

for ozone holes, hurricanes, tornadoes, and maelstroms. Vortices that are shed from aircraft

canards, wings, and control surfaces affect the handling characteristics of the airplane and

determine the closest safe following distance of other aircraft. On a smaller scale, vortices are

the fundamental building blocks of turbulent flow structures and are intimately connected

with the mixing ol chemical species, heat transfer, and drag forces.

Although the term "vortex" connotes a similar concept in the minds of most fluid dynamn-

icists, a precise definition is difficult to obtain. Robinson [1] suggests the following working

definition: "A vortex exists when instantaneous streamlines mapped onto a plane normal to

the vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference

frame moving with the center of the vortex core." Unfortunately, this definition requires a

knowledge of the vortex core before one can determine whether something is a vortex. In

practice, Robinson [2] and Robinson, Kline, and Spalart [3] use the above rigorous definition

to confirm that a particular structure is, in fact, a vortex. Regions of low pressure are used

to identify candidate vortices. Their scheme exploits the fact that the pressure in the core of

a vortex is lower than that of the surrounding fluid. A radial force is needed to provide the

centripetal acceleration that keeps a particle rotating about an axis. In the case of vortices,

this force is in the form of the pressure; the pressure inside a vortex is lower than the pressure

outside the vortex. Robinson and his colleagues find that elongated low-pressure regions in

incompressible turbulent flows alnGst always indicate vortex cores, but these surfaces can

be difficult to characterize and provide no information in regard to the sense of rotation or

the connectivity between the structures.

Moin and Kim [4] and Kim and Moin [5] use vorticity lines (sometimes called vorticity

field lines or vortex lines) to visualize vortical structures in turbulent channel flow. A vorticity

line is everywhere parallel to the local vorticity vector and is defined by

W-= - (1)

where W = V x u- is the vorticity vector, u- is the velocity vector, F is the location in space, and

s is the distance along the vorticity line. The definition suggests that vorticity lines should 0

go through the cores of vortices, which is usually the case. Hlowever, the resulting vortex , 3

lines are extremely sensitive to the choice of initial location for the integration. As Moin and

Kim [4] point out, "If we choose 1O arbitrarily, the resulting vortex line is likely to wander

over the whole flow field like a badly tangled fishing line, and it would be very difficult to odes
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identify the organized structures (if any) through which the line may have passed." Kim and

Moin [5] illustrate the potential tangle in their Fig. 2. To avoid such a confusing jumble, they

carefully select the initial points (inside suspected vortices) and focus on specific parts of
the resultant lines to illustrate some important features of turbulent channel flow. However,

Robinson [1] shows that even experienced researchers can be surprisingly misled by ordinary

vorticity lines.

Villasenor and Vincent [61 present an algorithm for the recognition and visualization of

elongated vortices in three-dimensional time-dependent flow fields. They start from a seed

point and compute the average length of all vorticity vectors contained in a small-radius

cylinder. The axis of the cylinder extends from the seed point to the surface of a sphere

centered about the seed point. They repeat this step for a large number of cylinders that

emanate from the seed point. The cylinder with the maximum average vorticity vector length

becomes a segment of the vortex tube. This process is repeated until the vorticity decreases
enough to end the vortex tube. Because the scheme depends only on the magnitude of

the vorticity vectors rather than their direction, the algorithm must limit the angle between

adjacent line segments so that the new line segment is different from the previous line segment

traced in the opposite direction. All vorticity vectors inside the vortex tube are drawn. The

process can be repeated for multiple time steps so that the evolution of the vortex tubes is
visualized as a sequence of all stored vorticity vectors. Villasenor and Vincent [6) claim that

the use of only the magnitudes and not the directions of the vorticity vectors is advantageous

because it allows the algorithm to find structures that do not have axes aligned with the

principal axis of the structure. As a consequence, the algorithm can inadvertently capture
structures that are not vortices. In addition, by visualizing all vectors that are inside the

cylinder, structures are included that are not part of the vortex originally intended to be
viewed. An example can be seen in Fig. 4(c) of Villasenor and Vincent [6], in which another

structure is responsible for some of the vorticity vectors that are almost orthogonal to the

vortex axis.

Zabusky, Boratav, Pelz, Gao, Silver, and Cooper [7] fit ellipsoids to surfaces of constant
vorticity JW71 and to constant vortex stretching I07. Vm7J/[07[ in an effort to understand the

dynamics of a vortex reconnection process. A bundle of vector field lines of the vorticity

W7 and the vortex stretching W-. Vu- emanate from the major and minor axes and from the
center of the minor ellipse of the respective fitted ellipsoids. Both the ellipsoids and the

vector field lines provide useful information about the vortices for their flow field, which

contains neither solid boundaries nor a mean straining field. In flows with these additional

complications, the regions with large vorticity magnitudes do not necessarily correspond to
vortices; hence, ellipsoids of constant vorticity coupled with vorticity lines are unlikely to
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provide useful characterizations.

Chong, Perry, and Cantwell [8] address the question of when a region of vorticity is
a vortex. They suggest that a vortex core is a region where the velocity-gradient tensor

has complex eigenvalues. In such a region, the rotation tensor dominates over the rate-of-

strain tensor. Soria and Cantwell [9J use this approach to study vortical structures in free-

shear flows. At those points at which the vorticity magnitude exceeds a specified fraction

of the maxinmum vorticity, the eigenvalues of the velocity-gradient matrix are determined.

Those regions that have complex eigenvalues and satisfy tile vorticity-threshold criterion are

rendered as solid surfaces that represent the vortices in the flow. This method correctly

identifies the large vortical structures in the flow. However, the method clutters the picture

with many smaller structures and does not provide a way to link the smaller vortical volumes

with the larger coherent vortices of which they might be a part.

Yates and Chapman [10] carefully explore two definitions of vortex cores. One definition

associates a vortex core with a streamline of minimumn curvature within a region of spiraling

streamlines. The other definition regards the vortex core as the line defined by the local
maxima of normalized helicity. Under certain circumstances, both definitions produce the

same vortex core. Unfortunately, all of the analyses and conclusions are appropriate only

for steady flows.

Bernard, Thomas, and Handler [11) use a semiautomated procedure to identify quasi-
streamwise vortices in the near-wall region of turbulent-channel-flow direct-numerical-sinmulation

data. Their method finds local centers of rotation in user-specified regions in planes perpen-
dicular to the streamwise direction. The local centers of rotation are linked to corresponding

centers in adjacent streamwise-norrnal planes to form a vortex-core line. The results of their
work indicate that experienced users call correctly find essentially all critical vortices re-

sponsible for the maintenance of the Reynolds stress. Hlowever, their method fails to capture
vortices with axes that are not nearly aligned with the streamwise direction. This shortcom-

ing can be a major difficulty for flows such as free-shear layers and transitional boundary

layers, in which both streamwise- and spanwise-oriented vortices are important. In addition,
the procedure depends heavily on user intervention to indicate regions where the program

should search for centers of rotation. This process is tedious, and the detailed results depend

upon nonquantifiable whims of the user.

Here, we present a new approach for identifying and characterizing vortices in complex
flow fields. Rather than a dependence upon a single quantity to define the vortex, the

new approach is a predictor-corrector method that converges to, the vortex skeletons (the
lines that pass through the vortex cores). In section 2, we describe how the new method
determines the vortex skeletons. In section 3, we discuss some novel vortex cross-section
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schemes that put meat on the skeleton lines, and we summarize our findings in section 4.

2 The vorticity-predictor pressure-corrector method

Our new predictor-corrector method produces an ordered set of points that approximates
the skeleton of a vortex. Associated with each point are quantities that describe, the local

characteristics of the vortex. These quantities may include the vorticity, the pressure, cross-

sectional information, the circulation, and other quantities of interest.
The new method produces lines that are similar to vorticity lines. However, because a

distinction exists between the vorticity, which is a mathematical function of the instantaneous
velocity field, and a vortex, which is a physical structure with coherence over a region of
space, the straightforward integration of the vorticity lines must be modified to locate the
skeleton lines associated with individual vortices. At the very least, because vorticity lines

can begin and end only at domain boundaries and vortices have no such restriction, we must
develop criteria for initiating and terminating the integration. In addition, the method must
be self-correcting (i.e., line trajectories that diverge from the vortex core should be subject

to a restoring (correcting) force).

In this section, we will first discuss the procedure used to find an initial point on the

vortex-core skeleton. Then we will reveal the details involved in growing the vortex-core
skeleton from the seed point. Finally, the termination of the vortex skeleton will be addressed.

2.1 Finding a seed point

Any flow-field information can be used to find starting locations for the predictor-corrcctor

process. The pressure and the vorticity magnitude are convenient scalars for choosing seed
points. In our work, the flow field is scanned in planes perpendicular to the streamwise
direction. The scanning direction affects the order in which vortices are located, but not the
overall features of the vortices. In each plane, the values of the pressure and the vorticity

magnitude are checked. Threshold values can be chosen a priori, or they can be a predeter-
mined fraction of the extrema. If the pressure is less than the pressure threshold and the
vorticity magnitude is greater than its threshold, then the point location is further refined.

In our implementation, this positional refinement shifts the seed point to the location of the
local pressure minimum in the plane perpendicular to the vorticity vector. (The rationale
for this refinement will be discussed later.) The sampling can be done at every grid point.

We experimented with sampling at every second, third, and fourth points. Although a test
of each grid point to determine if the specified pressure and vorticity criteria are met is not
expensive, we had hoped that sampling for seed points on a coarser mesh would eliminate
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the multitude of redundant vortices that we found. Global coarsening of the grid does not

uniformly eliminate the problem; some of the redundancies are avoided, but others remain.

A better method for eliminating the redundant vortices involves the selective elimination
of grid points from the supply of possible seeds. Elements of a three-dimensional integer

array correspond to volumes about each grid point. All of the elements are originally set

to zero. For the first vortex, any point in the flow field may be evaluated as a potential

seed point. As points are added to the vortex skeleton, the elements of the integer array

associated with the points are flagged. The flagged points will not be available as seeds

for subsequent vortices. Although many coincident vortices are eliminated in this way, a

further reduction can be achieved by also flagging elements of the array that correspond to

points that are within the vortex cross section. In Fig. 1, multiple skeleton lines started from

different seed points all pass through the same vortex tube. The redundancies are eliminated

when points inside a tube are excluded from the pool of future seed points.

2.2 Growing the skeleton

Once a seed point has been selected, the skeleton of the vortex core can be grown from

this point. The scheme that we have developed is a two-stage predictor-corrector method.

With this technique, the next position of the vortex skeleton is predicted by integrating
along the vorticity vector. This candidate location is corrected by adjusting the position

to the pressure minimum in the plane that is perpendicular to the vorticity vector. To

ensure that the minimum is actually part of the vortex under consideration, only a limited

angle between the vorticity vectors at the predicted and the corrected point is allowed.
The continuous modification of the vorticity-line location lessens the sensitivity to both the

initial conditions and the integration details. These sensitivities are common problems in
vorticity-line calculations. Just as importantly, the corrector stage decreases the influence

of background mean shear and small-scale vorticity fluctuations on the identification of the
vortex cores. The identified vortex skeleton corresponds more closely to what one might

intuitively choose as the vortex skeleton than to the standard vorticity-line result.

The modified vortex-line scheme is illustrated in the schematic diagrams of Fig. 2 and is
also summarized in pseudocode below.

'This differs from the angle limitation imposed by Villasenor and Vincent [6]. They restrict the change
in direction of the skeleton line along the center of the vortex tube from one point on the skeleton line to
the next. We restrict the change in the direction of the vorticity vector from the predicted location to the
corrected location.
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For each remaining seed point

If the seed point Po is not in any previous vortex

While the vortex skeleton continues

1. Determine vorticity c'i at pi

2. Integrate vorticity to find Pj+l (predictor)

3. Determine vorticity wi+l at Pi+l (corrector)

4. Find location pi+l of minimum pressure in

plane perpendicular to wi+1 at A,+1

5. Calculate quantities of interest at p,+,

6. i4---i+ l

The calculation of the vortex skeleton proceeds both forward and backward from the seed
point. The details for continuing the calculation from one point to the next are indicated
by the numbered items in the pseudocode. Processes I and 2, which are shown in Fig. 2(a),
represent the predictor stage of the algorithm. The corrector stage is summarized by pro-
cesses 3 and 4, which are illustrated in Figs. 2(b) and 2(c). We iterate the corrector stage so

that the pressure at position pi+l is the local minimum in the plane perpendicular to •i+1.
We restrict the movement in the corrector steps by limiting the angle between 4+1 and '-+i.

The resultant state, which is illustrated in Fig. 2(d), is equivalent to that in Fig. 2(a), except
that the index i + 1 replaces the index i.

The effectiveness of the predictor-corrector scheme is illustrated in Fig. 3, in which data

from the direct numerical simulations of Singer and Joslin [12] are analyzed. The transparent
vortex tube is constructed with data from the full predictor-corrector method. Its core is

indicated by the darker skeleton. The lighter skeleton follows the uncorrected integral curve
of the vorticity. It is obtained by disabling the corrector phase of the scheme. The vorticity
line deviates from the core, exits the vortex tube entirely, and wanders in the flow field.

Although the general behavior of the predictor-corrector algorithm is reliable and robust,
optimal performance of the technique requires careful attention to implementation details.
The remainder of this subsection addresses issues that are important to the successful use

of this method.

2.2.1 Eliminating feeder vortices

Because the vorticity near the edge of a vortex may be skewed with respect to tile vorticity at
the vortex center, the location of the pressure minimum in the plane perpendicular to the edge
vorticity might not be in the vortex center. This potential mismatch of the pressure-minimum
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and the vortex-center locations is rarely a problem in the vortex skeleton-line calculations

because the predictor-corrector method inhibits large excursions from the vortex center.

H[owever, a seed point might be selected near the vortex edge. In this case, adjustment of

the point location to the pressure minimum might still result in a point that is far from the

vortex center. These situations result in small "feeder vortices" that spiral toward the vortex

center. Examples of feeder vortices are illustrated in Fig. 4. We found that we can eliminate

most of these feeder vortices by taking advantage of the asymmetry of the predictor-corrector

method. In either forward or backward mode, the predictor-corrector scheme will converge

to a vortex center. We can eliminate the feeder vortices by redefining the initial point (i.e.,

the point at which we start recording the elements on the skeleton line) to be the location

after a fixed number (usually 5 to 10) of predictor-corrector steps. If the original seed point

is located on the vortex core, the method will return to the seed on the backward integration

path. However, if the original seed point is located on a feeder vortex, then the backward

integration will miss the original seed point and the skeleton of the feeder vortex. Instead,

the retraced skeleton line will closely follow the vortex center. Although the use of many

integration points before the initial point will eliminate feeder vortices, this practice will also

limit the minimum extent of any detected vortices.

2.2.2 Numerical considerations

Neither the pressure minimum nor the result of the vorticity-line integration is likely to

be on a grid point; hence, we must choose an interpolation scheme to find the pressure

and vorticity at arbitrary locations in the flow field. Our first experiments with trilinear

interpolation were a disappointment. No local extrema could be found between two points

connected by a straight line. To allow the local pressure minima to exist in the interior of a

grid cell, a higher order interpolation method is necessary. Second-order interpolation would

use three grid points: two from one side of the desired location and one from the other side.

To reduce any bias from the interpolation, a four-point Lagrange interpolation is used in each

of the three coordinate directions. When the outer points of the four-point method are not

in the domain, two-point Lagrange (linear) interpolation is used. The complete interpolation

scheme works quite well, although it requires more computer time than any other subroutine

in the computer program.

The vorticity integration can be performed with a variety of methods. First, we used a

fourth-order Runge-Kutta approach. This produced satisfactory results; however, step-size

optimization was difficult to automate. Instead, we developed a new technique whereby the

point-to-point distance in the vorticity integration is always equal to the smallest dimension

of the local grid cell. The new point location is found by advancing this distance in the
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direction of the local vorticity vector. This procedure ensures that successive points will not

be more than one grid cell apart, so that if the original calculation is well resolved, then the

vorticity-line calculation will also be sufficiently resolved. The procedure also reduces the

chance of wasting many calculations inside a single grid cell.

2.2.3 Pressure-minimum corrector step

The pressure-minimum correction scheme uses the method of steepest descent to find the
local pressure minimum in the plane perpendicular to the vorticity vector. First, the vorticity

vector at the candidate point is determined by interpolation from the surrounding grid points.

Two perpendicular unit vectors f and • (Fig. 5) are determined in the plane normal to the

vorticity vector. The smallest grid-cell dimension d is used as a local length scale to find

two points in the plane in the f and j directions. The pressures at these two points and

the current point are used to form the in-plane pressure-gradient vector. A sample point

is chosen at a distance d from the current point in the direction opposite to the pressure-

gradient vector. If the pressure at the new sample point is less than the pressure at the

current point and the dot product of the vorticities at the sample and current points is

greater than a specified value (0.90-0.95 works well), then the new sample point becomes

the current location and the process is repeated. If the sample point has a greater pressure

than the current point, then the distance d is halved and a new sample-point comparison

is made. If the orginal point is still the point of minimum pressure after d has been halved
twice, then one last check for a possible minimum is made in the direction of the positive

gradient. (Rare circumstances with a great deal of symmetry can produce a pressure-gradient

vector that is in the wrong direction.) Failure to find any points with lower pressure leads

to acceptance of the current point as the next point on the vortex-core skeleton.

2.3 The end of the line

Vorticity lines extend until they intersect a domain boundary, but vortices typically begin

and end inside the domain. Hlere, we discuss some techniques for stopping the integra-

tion. One particularly clean termination occurs when the vortex cross section, which will

be discussed in the next section, has zero area. This approach provides smooth surfaces for

visualization with no abrupt vortex-tube cutoffs in the direction that is tangential to the

vorticity. Although we have used this line-termination technique successfully, the method

can fail to show connections between parts of the same vortex. For instance, if a low-intensity

region exists between high-intensity regions of the same vortex, then the low-intensity region

might not satisfy the criteria for a finite cross section. If both high-intensity regions have
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finite cross sections, then the single vortex can be educed as two small disconnected vortices.

Although the criteria that define the lateral edge of the vortex can be weakened to ensure

that the low-intensity region has a finite cross section, the problem call potentially reemerge

with a new vortex that is educed with the weaker cross-section criteria. Our resolution of

this problem exploits the asymmetric nature of the predictor-correction method.

Because the predictor-corrector method will follow the core of a vortex regardless of the

criteria used to define the vortex cross section, the vortex skeleton line is continued even

when the cross-sectional area of the vortex is equal to zero. The vortex of interest can

either reintensify or dissipate. If the vortex reintensifies, then the continuation of the vortex

skeleton line will provide a link between the two more intense regions of the vortex. This

link can be visualized as a thread that connects the two disjoint regions, or the two regions

can simply be rendered with the same color or texture. On the other hand, if the vortex

dissipates, then the vortex skeleton line continuation will wander through tile flow field and

eventually either intercept a domain boundary or enter a new vortex. If a domain boundary

is reached, then the elements of the vortex skeleton line that were computed after tile cross-

sectional area became zero are discarded. These same points are also discarded if the vortex

skeleton line enters a new vortex with a nonzero cross-sectional area. To determine whether

the new region of finite cross section is a continuation of the original vortex or an entirely new

vortex, we march the predictor-corrector scheme backwards for the same number of steps

taken since the previous region of nonzero cross section was exited. Some possible scenarios

are illustrated in Fig. 6. In Fig. 6(a), the skeleton line leaves the first vortex tube at point

P1 and continues for N steps until it encounters the second vortex tube at point P2. The

predictor-corrector scheme is then marched backwards N steps from P2 to P3 . The distance

between points P1 and P3 is small relative to the distance between P1 and P2 (a 10-percent

criterion is used); hence, the link between P1 and P2 is most probably a low-intensity vortex,

and we keep the thread between these vortex tubes. However, in Fig. 6(b) the vortex tube

that ends at P4 continues to dissipate, and the continuation of its skeleton line lacks clear

direction and wanders through the flow field. The line intercepts another vortex tube at P5

after M steps. The predictor-corrector niethod is marched backwards M steps from P5 to

P6 . Initially, the reverse integration retraces the forward integration, but halfway between

Ps and P6 the two lines diverge rapidly and become uncorrelated. The distance from P4

to P6 is a large fraction of the distance from P4 to Ps, so the algorithm concludes that the

vortex tube intersected at P5 is different from the vortex tube that ends at P4. The points

on the vortex skeleton line that connect the two tubes are discarded, and the vortex skeleton

is terminated. Finally, in Fig. 6(c), the continuation of the skeleton line of the vortex tube

that ends at point P7 intersects the side of another vortex tube (shown as a wireframe) and
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is immediately taken to the pressure minimum at P8. The reverse integration for this case

is along the axis of the new vortex tube away from the original vortex. The point P9 is far

from P7; hence, the two vortex tubes are distinct from each other and the line connecting

them is discarded.

3 Putting meat on the bones

The determination of an appropriate vortex cross section has been one of the more difficult

practical aspects of this work. For isolated vortices, a simple pressure criterion to define the

edge of a vortex works quite well, although the information content of the visualization is

little more than that which is available from pressure isosurfaces. In regions where vortices

interact, the pressure alone is inadequate. The low-pressure regions from two or more vortices

can merge and distort the radius estimate of any single vortex. A similar problem arises if the

vortex edge is defined in terms of vorticity magnitude. This particular difficulty is resolved

if the angle between the vorticity vector on the skeleton line and the vorticity vector at any

radial position is restricted. Any angle greater than 90* indicates that the fluid at the radial

position is rotating in the direction opposite to that in the core. The vortex circulation F is

defined as

r W= - ldA (2)

where n. is a unit vector normal to the surface S; dA is an area element on the surface

S; and S is a cross-sectional surface of the vortex. The vortex circulation increases as tile

cross-sectional area increases, provided that the angle between the vorticity vector at a given

radial position and the vorticity vector on the skeleton line is less than 900. This observation

suggests the use of the 90' variation in vorticity vectors as a single vortex-edge criterion.

Unfortunately, in a uniform shear flow, this criterion results in an infinite cross section

because the vorticity at all radial locations is the same. In practice, we have found that the

90° restriction works well in combination with a low-pressure criterion for tihe vortex edge.

For the actual computation of the radial distance, the pressure and the vorticity must be

sampled along a number of radial lines perpendicular to the vortex skeleton line. We sample

at an increment that is equal to the minimum grid-cell dimension at the skeleton line. The

dot product of the vorticity at the radial point with the vorticity on the skeleton line must be

greater than zero for the 90°-variation criterion to hold. At each position, this dot product

and the pressure are checked to ensure that they both satisfy the respective requirements. If

either fails, the radial position along that line is the point of failure as determined by linear

interpolation between the two most recent sample points. By sampling along radial lines

that emanate from a point on the skeleton line, we implicitly require that the cross section
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be starlike (i.e., each radial line will intersect the cross-section boundary only once.) Cross
sections with more complicated geometries are truncated to a starlike form.

Relative measures for the vortex edge are also possible. A relative measure defines the
vortex edge as tile position at which some quantity decreases below a specified fraction of its
value on the skeleton line. Clearly, this measure will always give a finite cross section, and
the cross section can become infinite in a uniform shear flow. We have found that relative

measures are not as informative as the absolute measures.
The characterization of the cross section can take many forms. The detailed aspects of

the data are most nearly recovered if the radial location of the vortex edge is retained at
many closely spaced azimuthal angles. If the radius of the cross section were sampled at
100 increments in the azimuthal direction, then 36 radial distances and a reference vector
at every position along the vortex skeleton line would need to be stored. For the minimal-
storage approach that provides characteristic cross-sectional information, all of the radial
distances are averaged to obtain a single scalar radius. No reference vector is needed if only
the radius is used, so this simple method uses the least amount of storage. We have found
that the radius is a very good cross-section descriptor for isolated vortices. When vortices
begin to interact, the radius does not provide a good description of the asymmetric distortion
experienced by the vortices. However, the first few coefficients of the Fourier series of the
radial locations provides a convenient compromise between the simple radius approach and
a full description of all radial locations. The series are easy to compute, easy to interpret,
and allow a large range of cross-sectional shapes. In our work, we keep the constant term
(which is the radius), the first and second sine and cosine coefficients, and a reference vector.

Most of the cases that we have checked have a factor-of-10 drop in the magnitude of the
first and second coefficients, a fact that suggests that the series is convergent. Figure 7
illustrates a single cross section of a vortex educed from direct numerical simulation data.
The shaded region represents the interior of the vortex tube, the boundary of which was
determined by sampling along lines that radiate from the cross (which marks the skeleton-

line location) at 10 intervals. Tht dashed line is a circle centered about the skeleton-line
location with the averaged radius of the vortex tube. The solid line is the two-term Fourier
series representation of the vortex cross section. Note how the vortex boundary represented
by the Fourier series more nearly shows both the eccentricity and the flattening of the vortex

tube compared to the circular cross section.
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4 Conclusions

The innovative use of a two-step predictor-corrector algorithm has been introduced to educe

vortices from flow-field data. Rather than relying on any single quantity to determine the

vortex skeleton line, the new method uses vorticity to predict the new location of the next

element along the line and then corrects this location by using the pressure field in the

plane perpendicular to the vorticity vector. The prediction stage resembles a portion of

a vorticity-line calculation; the correction stage maintains the line near the vortex center.

Unlike other approaches, our method is able to treat the skeleton line through the vortex

core as an attractor in the flow field.

To make the method work in all but the simplest flow fiblds, numerous side issues,

which are common to all techniques that grow a skeleton line from seed points, must be

addressed. This paper discusses a number of novel approaches that we have developed to

deal with matters such as seed-point selection, feeder-vortex elimination, vortex skeleton-

line termination, and vortex cross-section description. Sample extractions of vortices from

various flow fields illustrate the different aspects of the technique.

The predictor-corrector technique presented here can identify vortices in flow fields that

are far more complex than those that we have used here for illustration purposes. An

extension of the direct numerical simulation of Singer and Joslin [12] provides one of the more

interesting flow configurations that we have considered. The predictor-corrector algorithm

educes a complex tangle of many interconnected vortices that are visualized in Fig. 8. All of

the implementation features discussed above are used to identify the vortices in this messy

flow field.

Although many modifications can be made to the basic scheme, the principle of using a

vector field to predict the location of the next point and a scalar field 0 correct this position

distinguishes this method from others.
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Figure 1: Multiple realizations of same vortex tube from different seed points.
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(a) (b)

P+i+1
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(C) (d) Pj+2

\Pi+I -i•
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Figure 2: Schematic of predictor-corrector algorithm. (a) Vorticity -i is used to predict
candidate point Pi+,. (b) Pressure is determined in plane perpendicular to vorticity Ai+I.
(c) New point on skeleton line pi+l is corrected to pressure minimum in plane perpendicular
to vorticity •i+,. (d) Repeat at point pi+,.
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vortcity Predclgtor-
corrector

Figure 3: Standard vorticity lines are compared with results from predictor-corrector scheme.
Both results use same flow data and same computer code. Standard vorticity lines are
obtained by disabling corrector portion of program. Transparent tube is constructed from
data from predictor-corrector method.

Figure 4: Feeder vortices merge with a large-scale hairpin vortex. Points that satisfy seed-
point criteria exist on edge of vortex tube. They curve inward toward centerline and then
follow main skeleton line.
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Figure 5: Position correction using local pressure field. Orthogonal unit vectors f and g- are
in plane perpendicular to vorticity vector. Method of steepest descent is used to locate local
pressure minimum.
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Figure 6(a).

Figure 6(b).

PS •Figure 6(c).

Figure 6: Schematic of line-termination procedure. (a) Forward integration from P, to P2
gives approximately same path as reverse integration from P2 to P3, so points P1 and P2
are connected by weak vortex. (b) Forward integration from P4 to P5 differs markedly from
reverse integration from PA to P6, so vortex terminates at P4. (c) Forward integration from
P7 to Ps intersects the side of new vortex tube (shown as wireframe). Reverse integration
from Ps to P9 goes along axis of new vortex away from original tube. Distance from P7 to
P, is large, so two vortices are not linked.
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Figure 7: Comparison of different ways to represent vortex cross section. Central cross in-
dicates point on skeleton line. Finely sampled vortex cross section is represented by shaded

region. Dashed line is circle with averaged radius. Solid line is two-term Fourier representa-
tion of vortex cross section.
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Figure 8: Many interacting vortices are educed from direct numerical simulation data with

predictor-corrector algorithm.
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